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ABSTRACT

The performance of the Climate Prediction Center’s long-lead forecasts for the period 1995–98 is assessed
through a diagnostic verification, which involves examination of the full joint frequency distributions of the
forecasts and the corresponding observations. The most striking results of the verifications are the strong cool
and dry biases of the outlooks. These seem clearly related to the 1995–98 period being warmer and wetter than
the 1961–90 climatological base period. This bias results in the ranked probability score indicating very low
skill for both temperature and precipitation forecasts at all leads. However, the temperature forecasts at all leads,
and the precipitation forecasts for leads up to a few months, exhibit very substantial resolution: low (high)
forecast probabilities are consistently associated with lower (higher) than average relative frequency of event
occurrence, even though these relative frequencies are substantially different (because of the unconditional biases)
from the forecast probabilities. Conditional biases, related to systematic under- or overconfidence on the part
of the forecasters, are also evident in some circumstances.

1. Introduction

Forecasts of future weather conditions at long leads
(months into the future) have the potential to provide
very substantial economic value, even if the predictands
are averages of meteorological quantities over months
or seasons. Prominent among areas where decision mak-
ing could be improved through use of such forecasts are
energy (Knox et al. 1985); agribusiness (Mjelde et al.
1998); hydrology (Kim and Palmer 1997); and also the
financial services industry, through the new financial
instruments known as ‘‘weather derivatives’’ (Dischel
1998). However, in order for decision makers to realize
full (or even positive) benefit from forecasts, a reason-
ably comprehensive understanding of the quality attri-
butes of those forecasts is necessary (Katz and Murphy
1997).

One source of long-range forecasts for time-averaged
conditions are the probabilistic long-lead outlooks pro-
duced operationally by the Climate Prediction Center
(CPC) of the U.S. National Weather Service (O’Lenic
1994). These have been formulated and distributed in
their present format since December 1994, at which time
they replaced a similar but more limited forecast product
that had been in operation since July 1982 (Epstein
1988; Wagner 1989). Building on earlier developments
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in long-range forecasting (Namias 1968), both of these
systems have relied on subjective (i.e., human fore-
caster) probability judgments to reconcile the infor-
mation from a collection of objective guidance products.
The judgments expressed in the present outlooks give
particular weight to relationships between time-aver-
aged North American weather with the state and inten-
sity of the El Niño–Southern Oscillation (ENSO) phe-
nomenon (O’Lenic 1994).

This paper reports on the diagnostic verification
(Murphy 1997; Murphy et al. 1989; Murphy and Wink-
ler 1987, 1992) of the new CPC outlooks. Diagnostic
verification of the previous generation of CPC long-lead
forecasts was reported by Murphy and Huang (1991).
Diagnostic verification differs from the more traditional
‘‘measures-oriented’’ approaches in that it examines the
full joint frequency distributions of the forecasts under
consideration and their corresponding observations,
rather than computing and examining one or a few scalar
measures of correspondence between forecasts and ob-
servations (e.g., mean squared error, or correlation be-
tween forecasts and observations). Diagnostic verifi-
cation is clearly more elaborate and detailed than mea-
sures-oriented verification, but it offers important ad-
vantages. It allows identification of particular aspects of
a collection of forecasts that may be strong, and others
toward which efforts for improvement could be targeted.
This information will generally be of interest to those
responsible for producing the forecasts. In addition, the
results of a diagnostic verification exercise can provide
forecast users with sufficiently detailed information
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about the quality of the forecasts to allow their optimal
use (e.g, Murphy 1994; Wilks 1997; Winkler and Mur-
phy 1985), and thus to derive maximum economic value
from them. In addition, the validity of value-added
transformations of the CPC outlooks (Briggs and Wilks
1996a,b; Croley 1996; and the interpretive products of-
fered by CPC at http://www.cpc.ncep.noaa.gov/pacdir/
NFORdir/HOME3.html) is predicated on the forecasts
satisfying certain consistency relationships with the ob-
servations, which cannot be assessed through exami-
nation of only scalar measures of correspondence.

2. Diagnostic verification

A forecast verification dataset consists of a collection
of forecasts, f, and the corresponding set of observa-
tions, o, to which the forecasts pertain. Generally each
forecast and observation is rounded to one of a finite
set of possible values; f i, i 5 1, . . . , I; and oj, j 5 1,
. . . , J. The collective behavior of these forecasts and
observations (apart from any time dependence that ei-
ther or both may exhibit) is summarized fully by the
joint frequency distribution of the forecasts and obser-
vations,

p( f i, oj) 5 Pr{ f i ù oj}. (1)

Here the intersection symbol ù can be read as ‘‘and,’’
and the distinction between sample relative frequency
(left-hand side) and population probability (right-hand
side) has been neglected. The joint distribution of fore-
casts and observations in (1) can be visualized as a table
or matrix of dimension I 3 J, each entry of which
contains the number of occasions that both forecast f i

and observation oj occurred divided by the total number
of forecast–observation pairs in the dataset.

Diagnostic verification consists of describing and
summarizing the statistical relationships in the joint dis-
tribution of forecasts and observations. However, for
even modestly sized verification problems direct inter-
pretation of (1) can be difficult. In practice it has been
found that factored forms of (1) and, in particular, graph-
ical representations of these factorizations, can be ex-
tremely illuminating. Two factorizations of the joint dis-
tribution (1) into a conditional distribution and a mar-
ginal distribution are possible (Murphy and Winkler
1987). Here, the factorization

p( f i, oj) 5 q(oj | f i)r( f i), (2)

called the calibration-refinement factorization, will be
used. The calibration-refinement factorization expresses
the joint distribution of the forecasts and observations
as the product of the conditional distributions of the
observations given each of the forecasts q(oj | f i) (the
‘‘calibration’’), and the distribution r( f i) expressing the
unconditional frequency of use of each of the I forecasts
(the ‘‘refinement’’).

Because the forecasts of interest here are probabilistic
in nature, the quantities f i in Eqs. (1) and (2) are prob-

abilities. The verification results in section 4 will be
presented primarily in terms of the calibration-refine-
ment factorization [(2)] and, in particular, using a graph-
ical device for portraying the two distributions q(oj | f i)
and r( f i) called the reliability diagram (e.g., Wilks
1995). Reliability diagrams depict the I conditional rel-
ative frequencies q(oj | f i) as a sequence of points that
define a function of the forecasts f i. For probability
forecasts that are well calibrated (‘‘reliable’’) there is a
close correspondence between each forecast f i and the
relative frequencies of the subsequent observations
q(oj | f i), so that the plotted points fall close to the 458
diagonal. The distribution r( f i), depicting the frequency
of use of each of the I possible forecast values, is gen-
erally plotted as an inset bar chart or histogram in the
larger diagram. The nature and, in particular, the dis-
persion, or variance, of the distribution r( f i) is also an
important determinant of overall forecast quality. For a
given degree of calibration, forecasts exhibiting higher-
variance refinement distributions r( f i) deviate more fre-
quently and more extremely from the climatological
event probability, and thus express more confidence in
aggregate. Given well-calibrated forecasts, a higher-var-
iance refinement distribution implies greater accuracy
or skill. In the extremes, the variance of r( f i) for perfect
forecasts is a maximum [equal to p(1 2 p), where p
is the sample climatological event frequency], while for
the climatological forecast ( f i [ p) this variance is zero.

3. Data

a. Forecasts

The forecasts of interest here are the long-lead out-
looks of the CPC for average temperature and total pre-
cipitation over the conterminous United States, in the
format initiated in December 1994. These forecasts are
constructed and disseminated monthly, near the middle
of each month, and consist of 14 forecast maps each for
temperature and precipitation. The first pair of maps
pertains to temperature and precipitation outcomes for
the next calendar month, that is, they relate to average
monthly temperature and total monthly precipitation
with a lead time of approximately 2 weeks. The re-
maining 13 map pairs pertain to overlapping 3-month
‘‘seasons,’’ the first of which also begins approximately
2 weeks after the forecast is issued. For example, the
first of these forecasts, issued in December 1994, in-
cluded temperature and precipitation forecasts for the
month of January 1995; and also for the 3-month periods
January–March 1995, February–April 1995, etc.,
through January–March 1996. The forecast dataset to
be analyzed here includes forecasts issued each month
from December 1994 through December 1998.

As mentioned previously, these are probabilistic fore-
casts, so the quantities displayed on the forecast maps
are probabilities rather than particular temperature or
precipitation values. The forecast probabilities relate to



1 JULY 2000 2391W I L K S

FIG. 1. The 102 divisions of the United States pertaining to the
forecasts and observations (solid lines). Dashed lines indicate state
borders that are not coincident with division boundaries. Heavy lines
divide the country into four regions, defined according to a cluster
analysis of the forecasts.

temperature or precipitation outcomes being in the lower
⅓ (below normal: cool or dry), middle ⅓ (near-normal),
or upper ⅓ (above normal: warm or wet) of the (1961–
90 base period) climatological distributions of average
temperature or total precipitation for the appropriate
month or season at particular locations. The forecast
maps have been discretized by CPC to the 102 areas
indicated in Fig. 1. These areas are coincident with, or
are amalgamations of, the climatic divisions used by the
U.S. National Climatic Data Center (NCDC). For each
month, the forecast dataset thus includes (2 3 102 3
14 5) 2856 probabilities for the below-normal outcomes
and equal numbers for the near-normal and above-nor-
mal outcomes. Note, however, that the forecasts are far
from being mutually independent. Rather, they exhibit
quite strong spatial correlation, as there are typically
three or fewer major features on a forecast map for the
United States; and they often exhibit time continuity
(i.e., temporal autocorrelation) as well.

Because the categories to which the forecasts pertain
are mutually exclusive and collectively exhaustive (the
outcome for a month or season must be either below,
near, or above normal, as defined), the three probabilities
for these outcomes at a given time and place must sum
to 1. Thus at most two probabilities need to be specified
to fully define a forecast. Operationally, further restric-
tions are placed on each forecast, which provide for full
specification using only one probability, and thus allow
easy display on a single map. The mapped quantities
are ‘‘probability anomalies’’ for the one category of the
three that is judged to be most likely. Since the cli-
matological probability for each category is 1⁄3, the fore-
cast probability of the indicated outcome is obtained by
adding 1⁄3 to the mapped anomaly. If the most likely
category is above or below normal, the probability of
the near-normal category is regarded as equal to the
climatological value of 1⁄3 and the probability for the
below- or above-normal category, respectively, is de-
creased by an amount equal to the probability anomaly.

For example, if the probability for a below-normal out-
come is 1⁄2, then by implication the probability for the
near-normal outcome is 1⁄3 and the probability for the
above-normal outcome is 1⁄6. Occasionally the near-nor-
mal outcome is forecast as most likely, in which case
the additional probability is removed equally from the
below- and above-normal categories. Often the fore-
casters judge that they are unable to add information
beyond the climatological probabilities, in which case
the probability anomalies for all three categories are
zero.

This current format for the CPC forecasts differs most
from the previous (1982–94) forecasts with respect to
lead time. These earlier forecasts provided a 1-month
forecast and a single 3-month forecast, each with a lead
time of 2–3 days. Other differences are that the older
system defined the climatological probabilities of the
three categories as 0.3–0.4–0.3 rather than ⅓–⅓–⅓, and
that the probability for the near-normal category was
always specified to be the climatological 0.4.

b. Observations

The basic observational data to be used are the month-
ly averaged temperatures and the monthly total precip-
itation for each of the 102 areas shown in Fig. 1 for the
period January 1995–January 1999. These time series
were constructed at CPC as weighted averages of
monthly data from appropriate subsets of the 344 NCDC
climate divisions (D. Unger 1999, personal communi-
cation). For each location, each monthly value in the
series and each of the 3-month values from January–
March (JFM) 1995 through November–January (NDJ)
1998/99 has been converted to the appropriate category
(below, near, or above normal) according to its mag-
nitude in relation to the corresponding 1961–90 cli-
matological distribution. Because this base period is
comparatively short, the two terciles defining the three
categories have been obtained using smooth distribution
functions fit to each set of 30 observations. The tem-
perature data have been modeled using Gaussian dis-
tributions. The precipitation data have been modeled
using gamma distributions, with individual months or
seasons having zero precipitation treated as censored
data (Wilks 1990).

4. Results

a. Scalar skill scores and lead-time stratification

In order to improve sample sizes, and to restrain the
number of figures required in the following, the veri-
fication results will be aggregated over three groups of
lead times. These stratifications are somewhat arbitrary,
although they do appear as fairly natural groupings of
Ranked Probability Scores (RPSs) (Epstein 1969; Wilks
1995) for the individual lead times. The RPS is com-
puted as the averaged sum of squared differences be-
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FIG. 2. Skill scores, based on the Ranked Probability Score in
relation to the climatological probabilities, of the seasonal temper-
ature (T ) and precipitation (P) outlooks, as functions of the lead time
(lead 1 5 0.5 month, lead 13 5 12.5 months). Dashed horizontal
lines show skill scores averaged over the indicated ranges of lead
times.

tween the cumulative distributions of the forecasts and
observations,

2T 3 m m1
RPS 5 f 2 o . (3)O O O Oi,k j,k1 2 1 2[ ]T t51 m51 k51 k51

Here the index k denotes the below-normal (k 5 1),
near-normal (k 5 2), or above-normal (k 5 3) outcomes,
and T is the number of forecast–observation pairs being
compared. The observation oj,k is a binary variable
whose value is 1 for the observed category and 0 for
the remaining two categories (e.g., oj,1 5 0, oj,2 5 1,
and oj,3 5 0 for a near-normal outcome).

Figure 2 shows skill scores based on the RPS (i.e.,
RPS scaled and normalized by the RPS obtained using
the climatological forecast ⅓–⅓–⅓; e.g., Wilks 1995)
for the seasonal temperature (T) and precipitation (P)
forecasts. It is immediately apparent that the temperature
forecasts are more accurate than the precipitation fore-
casts according to this measure and that the accuracy
of both decreases with increasing lead time. According

to this skill score, the temperature forecasts appear to
cluster in three lead-time groups, lead 1 (0.5 month),
leads 2–4 (1.5–3.5 months), and leads 5–13 (4.5–12.5
months); while these results for the precipitation fore-
casts appear to cluster (although less markedly) at leads
1–3 (0.5–2.5 months), 4–7 (3.5–6.5 months), and 8–13
(7.5–12.5 months). These lead-time stratifications will
be adopted in the following.

Note that the magnitudes of the skill scores in Fig. 2
are rather small. Conventionally this skill score is in-
terpreted as a proportionate increase in accuracy from
the reference (climatological) forecasts, in relation to
the accuracy difference between the reference and per-
fect forecasts. While the CPC outlooks certainly do not
approach the level of perfect forecasts, Fig. 2 nonethe-
less presents an overly pessimistic view of their poten-
tial usefulness and value. As a scalar measure of forecast
performance, this skill score necessarily aggregates (in
a somewhat arbitrary manner) many contributions to
forecast accuracy into a single number. Put another way,
many collections of forecasts with quite different error
characteristics could receive exactly the same score ac-
cording to a particular scalar measure, and distinguish-
ing them according to that measure would clearly be
impossible. A much fuller exposition of the performance
of these forecasts is obtained below, through exami-
nation of their joint distributions with the corresponding
observations.

b. Reliability diagrams

Figures 3 and 4 contain reliability diagrams for the
1-month and seasonal forecasts, respectively, with the
seasonal results in Fig. 4 further stratified according to
the lead times derived from Fig. 2. Results for both the
below-normal (cool, ‘‘C’’; or dry, ‘‘D’’) and above-nor-
mal (warm or wet, ‘‘W’’) probability forecasts are plot-
ted on the same figure in each case. Results for prob-
abilities assigned to near-normal outcomes are not
shown, primarily because in the comparatively rare in-
stances where they are different from the climatological
⅓, they deviate very little from this value, and further-
more exhibit generally poor reliability.

For purposes of these plots, the forecasts f i have been
grouped in the 15 bins f 1 # 0.025, 0.025 , f 2 # 0.075,
. . . , 0.275 , f 7 # 0.325, 0.325 , f 8 # 0.335, 0.335
, f 9 # 385, . . . , 0.585 , f 14 # 0.635, and f 15 .
0.635. The central bin, containing the climatological
forecast ⅓, is narrower than the others because this fore-
cast is used most frequently. The calibration functions
q(oj | f i) in Figs. 3 and 4 are indicated by solid lines
connecting the symbols ‘‘C,’’ ‘‘D,’’ or ‘‘W,’’ with the
line thicknesses indicating the smaller of the two sample
sizes for each pair of points: heavy lines for n $ 500,
medium lines for 500 . n $ 50, and light lines for n
, 50. Points on the calibration functions with n , 10
have not been plotted. The light broken lines running
through each calibration function are weighted (by sam-
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FIG. 3. Reliability diagrams [graphical depictions of (2)], for the 1-month forecasts of (left)
temperature and (right) precipitation, made with a lead time of approximately 2 weeks.
Calibration functions q(oj | f i) for the warm or wet (above normal) outcomes are indicated
by ‘‘W’’; those for cool and dry outcomes are indicated by ‘‘C’’ and ‘‘D,’’ respectively.
Thickness of line segments connecting these symbols increases with sample size, and the
light lines show weighted least squares regressions for each calibration function. Inset bar
charts (note logarithmic vertical scales) indicate the refinement functions r( f i). Triangular
symbols on the horizontal and vertical axes locate the average forecasts and average obser-
vations, respectively.

ple size, e.g., Draper and Smith 1981, p. 108 ff.) least
squares fits to q(oj | f i) as functions of f i, as an aid to
guiding the eye through the sometimes-considerable
sampling variations (Murphy and Wilks 1998). The
heavy dashed lines indicate the 1:1 relationship, onto
which the q(oj | f i) points for perfectly calibrated (i.e.,
fully reliable) forecasts would fall exactly.

The inset bar charts in Figs. 3 and 4 portray the re-
finement distributions, r( f i). Note that these are not his-
tograms of r( f i) and, in particular, that the vertical scales
on these insets are logarithmic in order that they can
portray the huge range of sample size for the different
forecast probabilities (forecasts with n , 10 are shown
on these insets, so that the number of bars is larger than
the number of plotted calibration-function points). In all
cases the category containing the climatological prob-
ability ⅓ is by far the most frequently used, as noted
above, even though this bin is much narrower than the
others. The degree of dispersion of r( f i) around the
average forecast f is indicative of the degree of con-
fidence of the forecasters: distributions with nearly all
their mass near the climatological value suggest that the
forecasters have low confidence that they can discern
deviations from the climatological probabilities for the
three outcomes, while the sharper distributions contain-
ing more frequent use of the extreme probabilities reflect
more confidence in aggregate. The average forecasts, f ,
are indicated by the triangular symbols on the horizontal

axes of each diagram. The corresponding average ob-
servations, o (i.e., the sample climatological relative
frequencies), are indicated by the corresponding trian-
gular symbols on the vertical axes.

The most prominent and consistent features of Figs.
3 and 4 are the strong cold bias in the temperature
forecasts, and the strong dry bias in the precipitation
forecasts, at all lead times. That is, while the average
forecasts are quite near the climatological value of ⅓
in all cases, the observed event relative frequencies dif-
fer consistently from ⅓, reflecting the fact that the 1995–
98 period to which the forecasts pertain was both warm-
er and wetter than the 1961–90 climatological base pe-
riod. These differences were evidently not recognized
in advance, in aggregate, by the forecasters during
1995–98. Clearly, these biases contribute negatively to
the scalar skill scores shown in Fig. 2.

For the temperature forecasts at all leads, and for the
monthly precipitation forecasts, the conditional proba-
bilities q(oj | f i) do increase steadily with increasing f i,
indicating that for these cases the forecasters were able
to resolve subsets of the valid periods with different
frequencies of the temperature and precipitation out-
comes. Conventionally, resolution is summarized by the
statistic

I1
2RES 5 n [q(o | f ) 2 o ] , (4)O i j in i51
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FIG. 4. As in Fig. 3 but for the seasonal temperature (top panels) and precipitation (bottom panels), stratified by lead time as indicated in
Fig. 2.

where ni is the number of forecasts in the ith category,
and n 5 Si (ni) is the total sample size. Geometrically,
RES is the average squared distance between the points
q(oj | f i) and the average outcome o indicated by the
triangular symbols on the vertical axes in Figs. 3 and
4. Values of the RES statistic for the reliability diagrams
in Figs. 3 and 4 are given in Table 1. The ability to
successfully resolve different outcomes is of course a
necessary condition for the forecasts to be useful, and
it is encouraging that even at the longest leads (4.5–
12.5 months) the temperature forecasts do exhibit good
resolution over the range of probabilities used. The res-
olution exhibited by the seasonal precipitation forecasts

is clearly less good, although the forecasts for above-
normal precipitation outcomes at the 0.5–2.5-month and
3.5–6.5-month leads appear also to exhibit some useful
resolution.

The inset bar charts portraying the refinement distri-
butions r( f i) show that, particularly for the seasonal
forecasts at the shortest lead times, probabilities quite
near the extremes of the allowable range are used at
least occasionally. The dispersion of these distributions
is markedly greater than found by Murphy and Huang
(1991) for the earlier generation of these outlooks. This
increase in apparent forecaster confidence is especially
striking, considering that the older forecast format in-
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TABLE 1. Four-parameter summaries of the reliability diagrams in Figs. 3 and 4, following Murphy and Wilks (1998) for (a) temperature
forecasts and (b) precipitation forecasts. The parameters b0 and b1 are the intercept and slope, respectively, of the weighted least squares
line fits to the calibration functions q(oj| fi), which are indicated as light broken lines in the figures. The parameters f and sf are the mean
and standard deviation, respectively, of the refinement distribution r( fi) shown in the insets. Also included are the unconditional biases [(5)]
and values of the RES statistic [(4)]. Results for 1-month forecasts and seasonal forecasts aggregated by lead time according to results in
Fig. 2 are shown.

(a) Temperature forecasts.

Valid
Lead

(month)

Cool

b0 b1 f sf Bias RES

Warm

b0 b1 f sf Bias RES

Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.13
20.08
20.12
20.02

1.19
1.02
1.19
0.79

0.32
0.32
0.32
0.32

0.042
0.054
0.044
0.033

0.069
0.075
0.059
0.087

0.0036
0.0073
0.0056
0.0013

0.06
20.16
20.31
20.09

1.13
1.85
2.16
1.68

0.34
0.35
0.35
0.34

0.042
0.054
0.044
0.034

20.104
20.138
20.096
20.141

0.0046
0.0121
0.0113
0.0046

(b) Precipitation forecasts.

Valid
Lead

(month)

Dry

b0 b1 f sf Bias RES

Wet

b0 b1 f sf Bias RES

Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.06
0.12
0.39
0.42

0.62
0.35

20.46
20.56

0.33
0.33
0.33
0.33

0.037
0.047
0.022
0.013

0.065
0.094
0.092
0.095

0.0019
0.0014
0.0011
0.0002

0.28
0.20
0.29
0.74

0.44
0.78
0.52

20.78

0.34
0.34
0.34
0.33

0.037
0.048
0.022
0.013

20.090
20.125
20.127
20.153

0.0030
0.0047
0.0020
0.0008

volved essentially zero lead time. Overall impressions
of dispersion in the refinement distributions that can be
obtained from the bar charts in Figs. 3 and 4 are quan-
tified by the standard deviations of these distributions,
which are included in Table 1. The dispersion of these
distributions for the temperature forecasts are greater
than for the precipitation forecasts, as the latter quantity
is generally regarded as more difficult to forecast. Also,
the standard deviations of r( f i) for the seasonal forecasts
decrease with increasing lead time, again reflecting the
decrease in forecaster confidence. Surprisingly, the stan-
dard deviations of r( f i) for the monthly forecasts are
smaller than for the seasonal forecasts at the same (or,
in the case of precipitation, longer) lead.

Table 1 shows four-parameter summaries for each of
the reliability diagrams in Figs. 3 and 4, following Mur-
phy and Wilks (1998). The two parameters b0 and b1

are the intercept and slope, respectively, of the weighted
least squares lines through the calibration function
q(oj | f i). While a linear fit is not necessarily the best
functional form for this purpose in all cases, these lines
do serve both to smooth the sampling variations in the
conditional event relative frequencies and to summarize
the dominant character of each calibration function. The
parameters f and sf are the mean and standard deviation,
respectively, of the refinement distributions r( f i) shown
in the insets. Since the sample climatological relative
frequencies (i.e., the average observation) can be re-
covered from these parameters as o 5 b0 1 b1 f , the
unconditional (i.e., overall) bias in each case can be
computed as

bias 5 f 2 o 5 (1 2 b1) f 2 b0. (5)

Apart from these biases, regression slopes b1 near 1
(e.g., for monthly temperature forecasts) indicate that
aggregate forecaster confidence as reflected by sf is ap-

propriate for their state of knowledge. Regression slopes
substantially greater than 1 (e.g., seasonal forecasts for
the warm temperature outcomes) suggest that greater
confidence on the forecasters’ part is warranted: issuing
sharper forecasts through expanded use of more extreme
probabilities (increasing sf ) would rotate the calibration
function closer to unit slope. Conversely, slopes appre-
ciably smaller than 1 (e.g., for the monthly precipitation
forecasts) indicate that the forecasters are overconfident,
and that better forecasts overall would result from more
conservative deviations from the climatological prob-
ability. Regressions with very shallow or negative
slopes (e.g., dry seasonal precipitation outcomes at all
leads) indicate that the forecast events are not resolved
well if at all overall, and thus cannot be considered
useful in aggregate.

Also shown in Table 1 are the values of the RES
statistic [(4)] for each case. Forecast resolution as re-
flected by RES can be understood here as a combination
of the effects of the regression slope b1 and the refine-
ment standard deviation sf . Other things equal, a large
b1 implies greater deviations between the extremes of
q(oj | f i) and the average observation o , and thus a large
RES. However, the dispersion sf controls how intensely
populated q(oj | f i) will be at the extremes (i.e., the mag-
nitudes of ni for large or small i), so that a large b1 in
combination with a small sf will result in only a modest
RES.

c. Stratified results

It may be of interest for many purposes to see veri-
fication results disaggregated more finely than according
to lead time (e.g., Livezey 1990). In this section veri-
fication statistics for each lead time are presented sep-
arately for geographic, seasonal, and ENSO stratifica-
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TABLE 2a. Disaggregation of Table 1 according to the geographic stratification defined by the heavy lines in Fig. 1. Temperature fore-
casts (cool outcome).

Region Valid Lead (month) b0 b1 f sf Bias RES

NW Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.09
20.06
20.15

0.17

0.25
0.59
0.90

20.25

0.31
0.31
0.31
0.31

0.049
0.053
0.042
0.033

0.142
0.187
0.181
0.218

0.0025
0.0035
0.0061
0.0002

NC Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.05
20.11

0.06
0.41

1.13
1.36
0.94

20.23

0.33
0.33
0.34
0.34

0.036
0.055
0.038
0.028

0.007
20.009
20.040

0.008

0.0023
0.0185
0.0087
0.0008

NE Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.36
20.06
20.03

0.20

2.00
1.24
1.25
0.52

0.33
0.32
0.32
0.32

0.029
0.040
0.037
0.029

0.030
20.017
20.050
20.046

0.0055
0.0084
0.0085
0.0017

S Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.10
0.07
0.01
0.05

0.97
0.32
0.55
0.36

0.31
0.31
0.31
0.31

0.046
0.062
0.051
0.037

0.109
0.141
0.130
0.148

0.0048
0.0030
0.0020
0.0014

TABLE 2b. Temperature forecasts (warm outcome).

Region Valid Lead (month) b0 b1 f sf Bias RES

NW Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.72
0.16
0.05
0.67

20.60
1.21
1.45

20.21

0.35
0.36
0.35
0.35

0.049
0.053
0.042
0.033

20.160
20.236
20.208
20.246

0.0065
0.0081
0.0059
0.0014

NC Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.02
20.50
20.52

0.12

0.96
2.46
2.37
0.67

0.33
0.33
0.33
0.33

0.036
0.055
0.038
0.028

20.007
0.018
0.068

20.011

0.0028
0.0259
0.0185
0.0025

NE Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.44
0.16
0.02
0.18

2.49
0.83
1.11
0.74

0.34
0.35
0.35
0.34

0.029
0.040
0.037
0.030

20.067
20.100
20.058
20.092

0.0088
0.0052
0.0070
0.0022

S Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.10
0.07
0.01
0.05

0.97
0.32
0.55
0.36

0.31
0.31
0.31
0.31

0.046
0.062
0.051
0.037

20.170
20.213
20.189
20.220

0.0081
0.0114
0.0101
0.0077

tions of the data. In order to conserve space, only the
summary parameters b0, b1, f , and sf , and bias and RES
are reported in tabular form. While yet finer divisions
of the data (e.g., lead-time, seasonal, and ENSO strat-
ification simultaneously) might also be of interest, it is
doubtful whether there is sufficient data available for
meaningful analysis, considering the strong space and
time correlation present in both forecasts and obser-
vations.

Tables 2a and 2b show the results for temperature
forecasts from Table 1a, disaggregated according to the
geographic stratification indicated by the heavy lines in
Fig. 1. These four regions were defined following a
cluster analysis of the forecasts (temperature and pre-
cipitation forecasts simultaneously), without regard to
the corresponding observations. The reliability dia-
grams for temperature forecasts summarized in Table
2a are similar overall to those stratified only by lead
time, although the results for the 1-month forecasts in

the northwest region are surprisingly poor in that the
summary calibration slope b1 is small for the cool out-
comes and actually negative for the warm outcomes.
The standard deviation sf indicates the least confidence
for forecasts pertaining to the northeast region, although
for most of these forecasts other than at the longest
leads, b1 is greater than 1, suggesting that this apparent
reticence may be misplaced. Forecasts for the southern
region generally exhibit the most confidence (largest sf ),
but especially for probabilities of the warm outcomes
the large slope values indicate that sharper forecasts
(even higher confidence) would be warranted.

The precipitation forecasts summarized in Tables 2c
and 2d show much stronger geographic differences. In
particular, the precipitation forecasts for the north-cen-
tral and northeastern regions are quite poor (predomi-
nantly negative calibration slopes) at all leads, and are
probably not useful for any purpose. By contrast, the
precipitation forecasts for the northwestern and southern
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TABLE 2c. Precipitation forecasts (dry outcome).

Region Valid Lead (month) b0 b1 f sf Bias RES

NW
Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.00
20.29
20.23

0.15

0.61
1.40
1.25
0.08

0.33
0.33
0.33
0.34

0.035
0.034
0.019
0.016

0.129
0.158
0.148
0.163

0.0013
0.0044
0.0026
0.0009

NC Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.28
0.19
0.72
0.35

20.07
0.05

21.53
20.43

0.33
0.33
0.33
0.33

0.034
0.034
0.015
0.012

0.073
0.124
0.115
0.122

0.0023
0.0026
0.0012
0.0004

NE Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.61
0.71
1.18
0.78

20.99
21.39
22.85
21.64

0.33
0.34
0.33
0.33

0.018
0.033
0.017
0.010

0.047
0.103
0.090
0.091

0.0016
0.0048
0.0038
0.0011

S
Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.07
0.04
0.08
0.12

1.16
0.86
0.73
0.52

0.33
0.31
0.32
0.33

0.049
0.067
0.030
0.016

0.017
0.003
0.006
0.038

0.0072
0.0052
0.0017
0.0003

TABLE 2d. Precipitation forecasts (wet outcome).

Region Valid Lead (month) b0 b1 f sf Bias RES

NW Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.30
0.01

20.11
0.73

0.52
1.71
2.01

20.52

0.34
0.34
0.33
0.33

0.035
0.034
0.019
0.016

20.137
20.251
20.443
20.228

0.0033
0.0084
0.0051
0.0030

NC Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.86
0.27
1.05
1.20

21.28
0.61

21.73
22.18

0.33
0.34
0.33
0.33

0.034
0.035
0.015
0.012

20.952
20.137
20.149
20.151

0.0063
0.0058
0.0031
0.0013

NE Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.39
1.04
1.52
1.69

0.04
21.84
23.25
23.72

0.33
0.33
0.33
0.33

0.018
0.033
0.017
0.010

20.073
20.103
20.118
20.132

0.0022
0.0056
0.0051
0.0016

S Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.01
20.06
20.37
20.16

1.13
1.39
2.30
1.78

0.34
0.35
0.34
0.34

0.050
0.068
0.030
0.016

20.054
20.076
20.072
20.105

0.0082
0.0123
0.0058
0.0021

regions show quite good resolution even through the
3.5–6.5-month lead, although the dry bias evident in
the spatially aggregated results is still present, especially
in the northwest. The precipitation forecasts for the
southern region exhibit the highest confidence (sf ), but
for the wet outcome probabilities even sharper forecasts
would be warranted.

Table 3 shows disaggregation of the summary reli-
ability diagram parameters according to winter [Decem-
ber–February for monthly forecasts, and NDJ–JFM for
seasonal forecasts], spring (March–May, and February–
April to April–June), summer (June–August, and May–
July to July–September, and fall (September–November,
and August–October to October–December) seasons.
For the temperature forecasts in Tables 3a and 3b these
are broadly similar to the aggregated results in Table
1a, although the winter 1-month temperature forecasts
exhibit surprisingly weak calibration. Generally the

forecasts for summer and fall show lower confidence,
although particularly for the warm-outcome probabili-
ties the large regression slopes b1 suggest that greater
confidence would be justified. The overall cold bias is
evident in all seasons except spring, where the relative
frequencies of the cold, near-normal, and warm out-
comes for 1995–98 are fairly close to the climatological
distributions defined by the 1961–90 normals.

The seasonally stratified precipitation results in Ta-
bles 3c and 3d are again notably different from the
aggregated results in Table 1b. All seasons again show
a strong dry bias. The results for 1-month and 0.5–3.5-
month lead seasonal forecasts in winter show generally
good resolution. The results for summer precipitation
forecasts at all leads indicate quite strong resolution,
which would justify much more frequent use of prob-
abilities away from the climatological ⅓, even though
forecasters were evidently least confident about precip-
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TABLE 3a. Disaggregation of Table 1 according to seasons. Temperature forecasts (cool outcome).

Season Valid Lead (month) b0 b1 f sf Bias RES

Winter Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.09
20.05
20.05
20.03

0.56
0.54
0.60
0.48

0.32
0.30
0.31
0.32

0.041
0.065
0.041
0.028

0.231
0.188
0.174
0.196

0.0016
0.0103
0.0036
0.0004

Spring Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.14
0.04
0.07
0.03

1.75
0.98
0.95
1.05

0.31
0.31
0.31
0.31

0.052
0.064
0.057
0.040

20.092
20.034
20.054
20.046

0.0121
0.0171
0.0124
0.0062

Summer Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.35
20.01
20.13

0.10

1.92
0.78
1.17
0.43

0.32
0.32
0.32
0.32

0.038
0.044
0.035
0.031

0.056
0.080
0.076
0.082

0.0101
0.0059
0.0031
0.0011

Fall Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.20
20.50
20.64
20.36

1.33
2.23
2.77
1.82

0.33
0.33
0.33
0.33

0.024
0.036
0.033
0.030

0.091
0.094
0.056
0.089

0.0030
0.0096
0.0164
0.0054

TABLE 3b. Temperature forecasts (warm outcome).

Season Valid Lead (month) b0 b1 f sf Bias RES

Winter Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.51
0.25

20.02
0.38

0.12
1.11
1.71
0.70

0.35
0.36
0.35
0.35

0.041
0.065
0.042
0.028

20.202
20.290
20.228
20.275

0.0041
0.0117
0.0073
0.0030

Spring Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.08
20.28
20.34
20.41

0.78
1.77
1.92
2.17

0.36
0.35
0.35
0.36

0.052
0.064
0.057
0.040

20.001
0.010
0.018

20.011

0.0044
0.0227
0.0186
0.0105

Summer Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.33
20.34
20.40
20.31

2.25
2.36
2.51
2.28

0.34
0.34
0.34
0.34

0.038
0.044
0.036
0.032

20.095
20.122
20.113
20.125

0.0130
0.0147
0.0111
0.0066

Fall Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.36
20.46
20.59
20.23

2.30
2.85
2.99
2.15

0.33
0.33
0.33
0.33

0.024
0.036
0.033
0.030

20.069
20.150
20.067
20.150

0.0082
0.0127
0.0152
0.0072

itation for this season. Results for spring precipitation
forecasts are similar to the aggregated results, while the
fall precipitation forecasts are uniformly poor and ap-
parently not useful.

Last, Table 4 stratifies the reliability diagram sum-
maries according to the temperature anomaly in the
Niño-3.4 region of the eastern tropical Pacific during
the valid month or season, with anomalies less than
20.48C regarded as cold, and anomalies greater than
10.48C regarded as warm. Again the reliability is com-
promised in all cases by the cold bias evident in the
aggregated results, but good resolution is maintained in
all cases through the 1.5–3.5-month lead. Forecaster
confidence as reflected by sf is generally highest for the
warm Niño-3.4 temperatures and least for the near-nor-
mal Niño-3.4 temperatures, which is consistent with the
expectation that much of the skill at these leads derives
from forecasts of the ENSO phenomenon. However, the
quite steep calibration slopes at all leads during near-
normal Niño-3.4 months and seasons indicates that

sharper temperature forecasts in these cases would be
well justified.

The precipitation results in Tables 4c and 4d suggest
that a large portion of the aggregate ability to forecast
precipitation is contributed by the warm subset. In con-
trast, all calibration slopes for cool Niño-3.4 cases are
negative. Precipitation forecasts during neutral Niño-3.4
temperature conditions are modestly successful through
the 0.5–2.5-month lead period, although as before their
reliability is compromised by the dry bias resulting from
comparatively wet conditions during 1995–98.

5. Post hoc recalibrations

The results presented in section 4 show that in many
cases the long-lead CPC forecasts are able to resolve in
advance subsets of the valid periods with outcome rel-
ative frequencies that are quite different from the (both
1961–90, and sample) climatological values. While
event resolution is a necessary condition for users to be
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TABLE 3c. Precipitation forecasts (dry outcome).

Season Valid Lead (month) b0 b1 f sf Bias RES

Winter Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.07
0.04
0.38
0.53

1.03
0.42

20.61
21.09

0.33
0.32
0.33
0.33

0.047
0.075
0.032
0.022

0.060
0.146
0.151
0.160

0.0049
0.0053
0.0029
0.0017

Spring Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.05
0.15
0.34
0.90

0.66
0.25

20.29
21.97

0.33
0.32
0.33
0.33

0.028
0.050
0.029
0.010

0.062
0.090
0.086
0.080

0.0022
0.0025
0.0015
0.0008

Summer Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.51
20.36
20.01
21.26

2.42
1.92
0.85
4.60

0.33
0.33
0.33
0.33

0.021
0.013
0.010
0.007

0.041
0.056
0.060
0.072

0.0057
0.0013
0.0003
0.0016

Fall Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.46
0.49
0.95
0.23

20.61
20.69
22.08

0.03

0.33
0.33
0.33
0.33

0.043
0.033
0.013
0.013

0.071
0.068
0.066
0.090

0.0046
0.0023
0.0015
0.0006

TABLE 3d. Precipitation forecasts (wet outcome).

Season Valid Lead (month) b0 b1 f sf Bias RES

Winter Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.16
0.21
0.41
0.94

1.76
0.94
0.38

21.21

0.34
0.35
0.34
0.34

0.047
0.076
0.032
0.022

20.098
20.189
20.199
20.189

0.0094
0.0141
0.0067
0.0019

Spring Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.31
0.20
0.12
0.50

0.36
0.86
1.02

20.14

0.34
0.34
0.34
0.33

0.028
0.050
0.029
0.010

20.092
20.152
20.127
20.124

0.0032
0.0097
0.0039
0.0012

Summer Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.45
20.42
20.27
22.08

2.49
2.56
2.08
7.56

0.33
0.34
0.33
0.33

0.021
0.013
0.011
0.007

20.042
20.110
20.086
20.085

0.0058
0.0022
0.0007
0.0039

Fall Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

1.04
0.82
1.27
1.16

21.87
21.13
22.45
22.08

0.33
0.33
0.34
0.34

0.043
0.033
0.013
0.013

20.093
20.117
20.097
20.113

0.0125
0.0036
0.0040
0.0013

able to derive value from forecasts, it is by no means
sufficient. In particular, the presence of strong cool and
dry biases in the CPC long-lead forecasts imply that
these forecasts were miscalibrated, and that taking the
forecast probabilities at face value would not be justi-
fied. The problem is analogous to assessing the prob-
abilities of outcomes in a hypothetical dice game in
which one of two six-sided dice is normal, but the other
has two ‘‘6s’’ but no ‘‘3.’’ A gambler (user) would not
be well served by probability calculations (forecasts)
based on the assumption that both dice are normal and
fair (the forecasts are unbiased), because the average
throw will sum to 7.5 rather than 7 (the average tem-
perature or precipitation is higher than in the 1961–90
base period). The reliability, or calibration, of the CPC
forecasts is further degraded in some cases by condi-
tional biases, which reflect their being either overcon-
fident (regression slopes b1 , 1) or underconfident (b1

. 1), apart from any overall, unconditional bias.
Retrospectively, one can define transformations of the

forecast probabilities that yield unbiased forecasts with
maximum correspondence between forecasts and the
subsequent event probabilities, at least for the data sam-
ple at hand. If it could be assumed that future CPC long-
lead forecasts would have the same properties as those
from 1995 to 1998, then these transformations would
generally lead to a substantial enhancement of forecast
value for those future forecasts (analogous to informing
the gambler about the nature of the nonstandard die).
Alternatively, such recalibration functions could provide
useful guidance to the forecasters themselves in pro-
ducing better-calibrated forecasts in the future.

A simple adjustment of this kind is the linear trans-
formation

f adj 5 a( f 2 f ) 1 o , (6)

where the scaling parameter a either expands or con-
tracts the dispersion of the forecasts f around the mean
f of the distribution r( f i), and o is the sample clima-
tological relative frequency. The transformation in (6)
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TABLE 4a. Disaggregation of Table 1 according to Niño-3.4 temperature anomalies at forecast valid time. Temperature forecasts (cool
outcome).

Niño-3.4 Valid Lead (month) b0 b1 f sf Bias RES

Cool Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.23
20.14

0.01
0.26

1.23
0.99
0.68

20.27

0.33
0.32
0.32
0.33

0.034
0.041
0.036
0.033

0.154
0.143
0.092
0.159

0.0036
0.0055
0.0032
0.0016

Normal Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.05
20.61
20.60
20.56

1.15
2.84
2.81
2.61

0.32
0.32
0.32
0.32

0.035
0.035
0.034
0.031

0.002
0.021
0.021
0.045

0.0042
0.0138
0.0148
0.0111

Warm Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.19
0.04
0.05
0.14

1.41
0.57
0.61
0.35

0.32
0.31
0.32
0.32

0.052
0.077
0.057
0.036

0.059
0.093
0.075
0.068

0.0075
0.0082
0.0047
0.0009

TABLE 4b. Temperature forecasts (warm outcome).

Niño-3.4 Valid Lead (month) b0 b1 f sf Bias RES

Cool Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.08
0.29
0.32
0.73

1.34
0.97
0.64

20.27

0.34
0.34
0.34
0.34

0.034
0.041
0.036
0.033

20.196
20.280
20.198
20.298

0.0071
0.0069
0.0036
0.0074

Normal Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

20.27
20.70
20.66
20.70

1.78
3.11
2.99
3.17

0.35
0.35
0.35
0.34

0.035
0.035
0.035
0.032

20.003
20.038
20.036
20.038

0.0102
0.0136
0.0130
0.0124

Warm Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

0.09
20.15
20.34
20.34

1.01
1.81
2.29
2.30

0.35
0.35
0.35
0.35

0.052
0.076
0.057
0.036

20.094
20.134
20.112
20.115

0.0055
0.0258
0.0207
0.0116

includes both an overall bias adjustment to the extent
that f ± o , and a correction for forecaster over- (a ,
1) or under- (a . 1) confidence that yields slope pa-
rameters b1 for the adjusted forecasts that are near 1.
Table 5 shows values of the scaling parameter a, ob-
tained by minimizing the REL statistic (Murphy 1973),

I1
2REL 5 n [q(o | f ) 2 f ] . (7)O i j i in i51

Retrospective application of (6) to the forecast data
yields reliability diagrams similar to those in Figs. 3
and 4, except that the points are translated either left or
right to correct the unconditional bias, and are either
dilated or shrunk relative to the mean forecast to alle-
viate the conditional biases. The particular sampling
variations (excursions around the fitted regression lines)
evident in Figs. 3 and 4 will be retained, but scatter
around the 1:1 line. For example, Fig. 5 shows the re-
liability diagrams obtained from the recalibrated sea-
sonal temperature forecasts for the 1.5–3.5-month leads
(cf. top middle panel of Fig. 4). It is important to em-
phasize that because the values a, f , and o have been
derived from the samples that are themselves being re-
calibrated, these results are better than could be obtained
using independent data. However, these recalibrations
will approximate the characteristics of the best forecasts

of this kind that could be formulated given the present
level of scientific knowledge.

Recall that results for probability forecasts of the
near-normal outcomes have not been reported in the
analyses above, primarily because the overwhelming
majority of the forecasts involve adjustments only to
probabilities for the above- and below-normal catego-
ries, as a consequence of the convention adopted within
CPC for the forecast format. Furthermore, in the few
cases where CPC has forecast increased probability of
the near-normal class, it has done so with poor reliability
and resolution, and over a very restricted range of prob-
abilities. Because the probabilities for the below-, near-,
and above-normal categories must sum to 1 for any
forecast, applying adjustments such as (6) to both the
below- and above-normal probabilities will often imply
probabilities for the near-normal category that are dif-
ferent from the climatological ⅓. Figure 6 shows reli-
ability diagrams for the forecasts of near-normal sea-
sonal temperatures that are implied by recalibration of
the below- and above-normal forecasts using (6) and
the parameters in Tables 1 and 5. Here the symbols ‘‘1,’’
‘‘2,’’ and ‘‘3’’ indicate the 0.5-, 1.5–3.5-, and 4.5–12.5-
month leads, respectively, and the line weights have the
same meanings as in the foregoing figures. The range
of probabilities for the near-normal temperature out-
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TABLE 4c. Precipitation forecasts (dry outcome).

Niño-3.4 Valid Lead (month) b0 b1 f sf Bias RES

Cool Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.32
0.84
2.38
1.80

20.02
21.51
26.20

24.48

0.34
0.33
0.33
0.33

0.046
0.038
0.016
0.017

0.027
20.012
20.004

0.008

0.0054
0.0103
0.0132
0.0080

Normal Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.25
20.14

0.18
20.14

1.53
1.04
0.09
1.00

0.33
0.33
0.33
0.33

0.012
0.017
0.014
0.012

0.075
0.127
0.120
0.140

0.0011
0.0019
0.0009
0.0017

Warm Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.09
0.03

20.04
20.68

1.00
0.54
0.74
2.67

0.32
0.32
0.33
0.33

0.041
0.071
0.032
0.014

0.090
0.117
0.126
0.129

0.0026
0.0024
0.0011
0.0017

TABLE 4d. Precipitation forecasts (wet outcome).

Niño-3.4 Valid Lead (month) b0 b1 f sf Bias RES

Cool
Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

0.59
0.81
2.14
2.01

20.59
21.25
25.15
24.77

0.33
0.33
0.34
0.33

0.046
0.037
0.016
0.017

20.065
20.068
20.049
20.106

0.0068
0.0089
0.0094
0.0086

Normal Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.23
0.23
0.82
0.86

1.97
0.82

20.99
21.06

0.34
0.34
0.34
0.33

0.012
0.017
0.014
0.012

20.100
20.169
20.143
20.180

0.0012
0.0031
0.0015
0.0029

Warm Month
Season
Season
Season

0.5
0.5–2.5
3.5–6.5
7.5–12.5

20.05
0.10

20.25
20.91

1.43
1.13
2.19
4.20

0.34
0.35
0.34
0.33

0.041
0.072
0.033
0.014

20.096
20.146
20.155
20.146

0.0045
0.0120
0.0071
0.0047

come here is much greater than in the original forecasts,
and the good reliability indicates that the separate re-
calibrations for the below- and above-normal outcomes
are reasonably consistent with one another.

6. Summary and conclusions

This paper has presented a diagnostic verification
analysis of the CPC long-lead forecasts for the years
1995–98. These forecasts were found to successfully
resolve different relative frequencies of the temperature
outcomes throughout the full range of lead times, which
extend to more than a year. As would be expected, pre-
cipitation events are less well resolved, and only pre-
cipitation forecasts with lead times of 2.5 months or less
could be considered successful in aggregate. The most
prominent sources of forecast inaccuracy were the quite
strong (unconditional) forecast biases that may have re-
sulted from the 1995–98 period being substantially
warmer and wetter than the 1961–90 reference period.
Less prominent but still important in some cases were
conditional biases, or the systematic miscalibration of
the probability forecasts after accounting for differences
between the average forecast and average observation.
A much broader range of probabilities are used, with
good event resolution and at much longer lead times,

than in the earlier generation of these forecasts (Murphy
and Huang 1991), indicating substantial improvement
from the previous forecasts.

Stratification of the forecasts according to season,
geographic region, and tropical Pacific sea surface tem-
perature yielded differences that were most prominent
for the precipitation forecasts. In particular, precipitation
forecasts for all lead times were quite poor, and probably
not useful in aggregate, for the north-central and north-
eastern regional stratification, the fall seasonal stratifi-
cation, and the cool Niño-3.4 temperature stratification.
Perhaps surprisingly, temperature forecasts for periods
with near-normal Niño-3.4 conditions show quite strong
resolution for both warm and cool forecasts at all lead
times, suggesting that forecasters would be justified in
being less conservative regarding temperature proba-
bilities in such conditions.

The utility of a diagnostic verification exercise de-
rives from its ability to identify particular aspects of the
forecasts, both good and bad, that contribute to overall
performance. After the strong unconditional biases not-
ed above, the most important weakness of these fore-
casts are the conditional biases manifested by weighted-
regression slopes b1 different from 1, and deriving fun-
damentally from systematic over- or underconfidence
for particular predictands and lead times. Although cor-
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TABLE 5. Adjustment parameters a for (6), that minimize the re-
sulting REL statistic [(7)].

Predictand Valid Lead

a
(below
normal)

a
(above
normal)

Temperature
Temperature
Temperature
Temperature

Month
Season
Season
Season

0.5
0.5

1.5–3.5
4.5–12.5

1.6
1.2
1.4
0.9

1.4
2.1
2.6
1.8

Precipitation
Precipitation

Month
Season

0.5
0.5–2.5

0.9
0.5

0.8
0.8

FIG. 5. Reliability diagrams for recalibrated temperature probability
forecasts for the 1.5–3.5-month leads.

FIG. 6. Reliability diagrams for recalibrated probability forecasts
for near-normal seasonal temperature outcomes. Here ‘‘1’’ indicates
0.5-month leads, ‘‘2’’ indicates 1.5–3.5-month leads, and ‘‘3’’ indi-
cates 4.5–12.5-month leads.

relation measures relating forecasts and observations are
sometimes used in forecast verification, such statistics
are blind to both the unconditional and systematic con-
ditional biases that are prominent features of these fore-
casts, and thus would portray potential rather than actual
skill (Murphy and Epstein 1989; Murphy 1995). The
use of correlation measures for verification of the pre-
sent forecasts would be completely uninformative about
the two primary contributions to error (and opportunities
for their improvement). Indeed, for these data, corre-
lation scores would measure primarily the lack of fit of
the weighted regression lines in Figs. 3 and 4 and in
Tables 1–4. In contrast, scalar verification measures such
as the ranked probability score (Fig. 2) reflect the fore-
cast biases very strongly and thus portray an unduly
pessimistic picture of forecast performance.

In order for decision makers to make best rational
use of forecasts, it is essential that outcome probabilities
corresponding to each possible forecast be known, at
least approximately. For reliable, or well-calibrated,
probability forecasts it is possible to take the forecasts
at face value: close correspondence between the fore-
casts f i and the conditional outcome relative frequencies
q(oj | f i) [cf. (7)] implies that the forecasts ‘‘mean what
they say.’’ Direct use of interpretive procedures based
on the forecasts (e.g., Briggs and Wilks 1996a,b; Croley
1996) assumes good reliability. The previous generation
of these forecasts possessed this property (Murphy and
Huang 1991), although over a much more restricted
range of forecast probabilities. The two major sources
of bias in the current forecasts both contribute to de-
grading their reliability. Forecasters at CPC have rec-
ognized the unconditional bias ( f ± o) problem and
have taken steps to incorporate changing climatic mean
conditions into the forecast construction process (Mon-
astersky 1999; R. E. Livezey 1999, personal commu-
nication). The second source of bias is conditional; that
is, the tendency to underforecast large probabilities and
overforecast small probabilities in situations where the
forecasters could be more confident, or the tendency to
overforecast large probabilities and underforecast small
probabilities when more conservative probability as-
sessment would be beneficial. It is hoped that identifi-
cation of these biases will help to refine forecast per-
formance in the future (cf. Murphy and Daan 1984).

Last, a simple recalibration scheme was introduced

that corrects the unconditional and conditional biases
based on in-sample statistics. Given that, at minimum,
the unconditional biases have been recognized and their
correction is being attempted by CPC, it should not be
expected that these corrections would be valid for future
forecasts. They might be useful, however, in retrospec-
tive studies of potential forecast value (Wilks 1997). To
the extent that the CPC forecasters could successfully
incorporate adjustments to future forecasts in the spirit
of those in Table 5, which imply well-calibrated fore-
casts over a broad range of probabilities for near-normal
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conditions (Fig. 6), it might well be possible to relax
the current convention of enforcing the climatological
probability for the near-normal category in most cases.
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