

Warning verification

issues and approaches

Martin Göber

Department Weather Forecasting Deutscher Wetterdienst DWD *E-mail: martin.goeber@dwd.de*

Users of warnings are very diverse and thus warning verification is also very diverse.

Each choice of a parameter of the verification method has to be user oriented – there is no "one size fits all".

Disposition Q & A (pproaches)

- 1. Information about warning verification (5)
- 2. Characteristics of warnings (10 minutes)
- 3. Observations: which, sparseness, quality, thresholds (10)
- 4. Matching of warnings and observations (15)
- 5. Measures (10)
- 6. interpretation of results, user based assessments (20)
- 7. Comparison of warning guidances with warnings (15)

Issue: state of available information

19 out of 26 students answered (at least 1 question) = 73 % answer rate

3. Are there documents in your service which lay down the rules in warning verification (or which generally describe how warning verification is done)?				
		Response Percent	Response Count	
Yes		33.3%	6	
No		44.4%	8	
don't know		22.2%	4	
	answer	ed question	18	
	skipp	ed question	1	

Issue: state of available information

- Warning verification is hardly touched in the "bibles", i.e.: Wilks statistics textbook; Jolliffe/Stephenson's verification book; Nurmi's ECMWF "Recommandations on verification of local forecasts"; THE JWGV webpage, some mentioning in Mason's consultancy report.
- Yet lots of the categorical statistics can be used, although additional care is needed.
- It's very difficult to find information on the web or otherwise about the NMS' procedures – exception: NCEP's hurrican and tornado warnings.
- What is clear: compared to model verification it is surprisingly diverse, because it should be (often is) driven by diverse users.
- One document has quite a lot of information concentrated on user-based assessments: WMO/TD No. 1023 *Guidlines on performance assessment* of public weather services. (Gordon, Shaykewich, 2000).

http://www.wmo.int/pages/prog/amp/pwsp/pdf/TD-1023.pdf

Information sources

Presentation based on (partly scetchy) information from NMS of 10 countries (Thanks!):

- Austria
- Botswana
- Denmark
- Finland
- France
- Germany
- Greece
- Switzerland
- UK
- USA

European examples of warnings

http://www.meteoalarm.eu

meteo**alarm** http://www.meteoalarm.eu alerting europe for extreme weather Start | News | About Meteoalarm | Help | Terms and Conditions | Links | Greyscale Maps » Europe: Weather warnings: Europe: Awareness Reports You can find detailed information abo awareness types: show all awareness types Display: today tomorrow relevant country. Θ Created: 04.06.2009 14:51:06 | Valid for: 04.06.2009 E 3 CY * * 100 :-2 ŧ H £,¢ 10 ¥ **1** D. Acores ŧ Madeira ¶ **, °∀ _** Canarias * NO Page 1 ŧ No Wind Extreme high temperature White PT :-Rain Extreme low temperature Green <u>ال</u> * 🛷 Coastal Event Snow/Ice Yellow Thunderstorms 💯 Forestfire £ Orange : 0 🔦 Avalanches Red 쿻 Fog 0 ик 💥 /61

4th Int. Verification Methods Workshop, Tute

Yellow:

- The weather is potentially dangerous. The weather phenomena that have been forecast are not unusual,
- 2. but be attentive if you intend to practice activities exposed to meteorological risks
- Keep informed about the expected meteorological conditions and do not take any avoidable risk.

Orange:

- 1. The weather is dangerous. Unusual meteorological phenomena have been forecast.
- 2. Damage and casualties are likely to happen.
- 3. Be very vigilant and keep regularly informed about the detailed expected meteorological conditions. Be aware of the risks that might be unavoidable. Follow any advice given by your authorities.

Red:

- 1. The weather is very dangerous. Exceptionally intense meteorological phenomena have been forecast.
- Major damage and accidents are likely, in many cases with threat to life and limb, over a wide area.
- 3. Keep frequently informed about detailed expected meteorological conditions and risks. Follow orders and any advice given by your authorities under all circumstances, be prepared for extraordinary measures.

Paradigm shift in 21st ct:

many warnings issued on a small, regional scale

1. What are the spatial scales on whi	ch warnings are issued and/or verified in your country? Check all th	nat apply.		
	issued	verified	verification	Response Count
cities	100.0% (10)	60.0% (6)	60 %	10
counties	100.0% (4)	50.0% (2)	50 %	4
provinces	100.0% (12)	58.3% (7)	58 %	12
whole country	88.9% (8)	77.8% (7)	88 %	9
			answered question	19
			skipped question	0

2 additional free parameters when to start: **lead time**

how long:

Warnings for: Itä-Uusimaa

	Wind
<u>pro</u>	Itä-U (Varo Östra (Varn Itä-U 24 h.

valid from 04.06.2009 14:06 CET Until 05.06.2009 14:06 CET

duration

ind Awareness Level: Yellow tä-Uusimaa: Sisävesillä liikkuvia varoitetaan voimakkaasta pohjoisen ja koillisen välisestä tuulesta. Varoitus kattaa seuraavat 24 h. Se annetaan ajanjakson suurimman vaaratason mukaan.) Ostra Nyland: De som rör sig på insjöarna varnas för den kraftiga nordliga till nordostliga vinden. Varningen gäller upp till 24 timmar enligt den högsta nivån.) tä-Uusimaa: Advisory of strong north to northeast winds on inland lakes. (Warning covers the next 24 h. It is based on the highest awareness level during the warning period.)

Display:

today

tomorrow

These additional free parameters have to be decided upon by the forecaster

or

fixed by process management (driven user needs)

2. What is the required lead time for warnings for areas of different size? Check all that apply.						
	cities	counties	provinces	whole country	Response Count	
don't know	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0	
less than 1 hour	100.0% (2)	50.0% (1)	0.0% (0)	0.0% (0)	2	
1 hour	50.0% (1)	50.0% (1)	0.0% (0)	0.0% (0)	2	
2 hours	100.0% (2)	0.0% (0)	0.0% (0)	0.0% (0)	2	
3 hours	0.0% (0)	0.0% (0)	0.0% (0)	100.0% (1)	1	
6 hours	33.3% (1)	66.7% (2)	33.3% (1)	33.3% (1)	3	
half a day	50.0% (2)	25.0% (1)	25.0% (1)	50.0% (2)	4	
1 day	22.2% (2)	33.3% (3)	66.7% (6)	55.6% (5)	9	
2 days	12.5% (1)	37.5% (3)	62.5% (5)	87.5% (7)	8	
don't know	40.0% (2)	40.0% (2)	60.0% (3)	40.0% (2)	5	
				answered question	18	
				skipped question	1	

grey highlighting: highest value in each row% tendency: larger scale, larger lead time

Issue: physical thresholds

Warnings:

 clearly defined thresholds/events, yet some confusion since either as country-wide definitions or adapted towards the regional climatology

• sometimes multicategory ("winter weather", thunderstorm with violent storm gusts, thunderstorm with intense precipitation)

Observations:

- clearly defined at first glance
 - yet warnings are mostly for areas \rightarrow undersampling
 - "soft touch" required because of overestimate of false alarms
 - use of "practically perfect forecast" (Brooks et al. 1998)
 - allow for some overestimate, since user might be gracious,
 - as long as something serious happens
 - probabilistic analysis of events needed

Issue: physical thresholds

Issue: observations

16/**61**

Issue: observations

5. How do you deal with the sparseness of the observations, i.e. how many observations (in the area and/or time interval) do you require to have been above a threshold for saying an "event has occured"? How do you deal with the quality of the observations? Check all that apply.				
	yes	no	Response Count	
single obs above threshold sufficient	50.0% (6)	50.0% (6)	12	
single obs slightly below threshold already sufficient	33.3% (3)	66.7% (6)	9	
more than one obs needed	86.7% (13)	13.3% (2)	15	
data are automatically quality controlled	40.0% (4)	60.0% (6)	10	
data are manually quality controlled	83.3% (10)	16.7% (2)	12	
		answered question	16	
		skipped question	3	

Issue: observations

<u>What:</u>

- standard: SYNOPS
- increasingly: lightning (nice! :), radar
- non-NMS networks
- additional obs from spotters, e.g. European Severe Weather Database ESWD

Data quality:

- particularly important for warning verification
- "skewed verification loss function": missing to observe an event is not as bad as falsely reporting one and thus have a missed warning
- multivariate approach strongly recommended (e.g. no severe precip, where there was no radar or satellite signature)

Issue: data formats

Warnings:

• all sorts of ASCII formats, yet trend towards xml

Observations:

- "standard chaos"
- additional obs from spotters, ASCII, ESWD

Raw ASCII data (Selected event: F4 Pforzheim tornado, Germany, 10 July 1968)

INFO|10|V01.40|3|QC2|EYEWTN LIT NWSP TV WXSVC WWW|TorDACH V1.6.00, tordach.org/de, de@tordach.org; D. Fuchs, Promet 4'81, 8-10 ==> Monatl. Witterungsber. DWD;; Monatsarbeit der Wetterdienst-Referendarausbildung, 1978, 56 S.;; Pers. comm. 2000; R. Nestle, Meteor. Rdschau. 22 (1969), 1-3; Becht H. P., Stadtarchiv Pforzheim, pers. comm. (1998); Fulks, H.W., 1969: A synoptic review of the Pforzheim tornado of; 10 July 1968. 2nd Wea. Wing Tech. Bull, Air Wea. Service, US Air Force,; April 1969, 26-43.|1|Nikolai Dotzek, ESSL|20051231

TIME & PLACE | 19 | 1968 | 07 | 10 | WED | 20 | 30 | 1H | DE | BW | Ittersbach, Pforzheim | | | 48.9055 | 08.5270 | HILLS | RURAL | RURAL | URBAN | 10 | WED | 20 | 30 | 1H | DE | BW | Ittersbach, Pforzheim | | | 48.9055 | 08.5270 | HILLS | RURAL | RURA

TORNADO|23||4|8|DMGTEXT||FNLOBS|NOSVTCSOBS||||20|35||1000|W-E|DM:150M|170kFm||300|2|Same cell as T7/F3 tornado at Sarrebourg, Eschbourg, Hagenau#

Largest difference to model verification !

temporal

• hourly (SYNOPS), e.g. NCEP, UKMO, DWD as "process oriented verification"

• "events":

- warning and/or obs immediately followed by warning
- obs in an interval starting at first threshold exceedance (e.g. UKMO 6 hours before the next event starts)
- even "softer" definition: as "extreme events"
- thus size of sample N varies between a few dozens and millions !
- lead time for a hit: desired versus real; 0, 1, ... hours ?

temporal

6. How do you match observations and warnings ? What is the actual lead time (as opposed to officially desired) which you require to count a warning as a "hit"?					
	yes	no	Response Count		
on hourly basis	20.0% (1)	80.0% (4)	5		
on three hourly basis	50.0% (3)	66.7% (4)	6		
as "events"	81.8% (9)	18.2% (2)	11		
lead time of at least 1 hour	50.0% (2)	50.0% (2)	4		
lead time of least 2 hours	40.0% (2)	60.0% (3)	5		
lead time of 2 or more hours	75.0% (6)	25.0% (2)	8		
		answered question	16		
		skipped question	3		

user: operational control ("single voice")

1. 1.		1.5	1.0	4 -	10	1.0			hourly, "process oriented" verification	"event oriented" verification
hit <u>ti</u> o ti	time observation warning time of issue	15	16 1 X	<u>17</u> 1 1	<u>18</u> 1	<u>19</u> 1	20	21	1 hit 3 false alarms	1 hit
miss (too late) ^{or} hit (still useful)	time observation warning time of issue	15	5 16 1 1 X	3 17 1	7 18	8 19	9 20) 21	hourly, "process oriented" verification 1 miss (or hit) 2 false alarms	"event oriented" verification 1 miss
hit + false alarm (too long)	time observation warning time of issue	1	5 16	5 17 	7 18	3 19 1	9 20) 2'	hourly, "process oriented" verification 1 hit 2 false alarms	"event oriented" verification 1 hit (including 1 false alarm)

Largest difference to model verification !

spatial

- sometimes "by-hand" (e.g. Switzerland, France)
- worst thing in the area
- dependency on area size possible
- "MODE-type" (Method for Object-based Diagnostic Evaluation)

Issue: measures

Finley dataset, 1884

Tornado	Tornado observed					
forecast	Yes	No	fc Σ			
Yes	28	72	100			
No	23	2680	2703			
obs ∑	51	2752	2803			

Issue: measures

7. Which measures do you use to sur	nmarise the quality ? Check all that apply.			
			Response Percent	Response Count
hit rate (= probability of detection)			83.3%	10
false alarm rate (percentage of falsly warned non-events)			58.3%	7
false alarm ratio (percentage of false warnings)			25.0%	3
TS (threat score)			50.0%	6
ETS (equitable threat score)			8.3%	1
HSS (Heidke skill score)			41.7%	5
HKS (Hansen-Kuippers score = TSS True skill score)			16.7%	2
ROC			16.7%	2
metric taking costs and losses explicitely into account			8.3%	1
		Hide replies Other (please)	ase specify)	4
4 Denterus			0.40.414	Q Find
1. Dont now	. 6 Ab	Fn, Jun 5, 2009	9:42 AM	Q. Find
2. If don't know if they compute any (n nese measures	Thu, Jun 4, 2009	9:57 PM	Q. Find
5. w dont use any of deal above, b	u we use anomer criteria (for example, Obuknov criteria).	i nu, Jun 4, 2009	14.39 PM	Cind
4. odds ratio		Thu, Jun 4, 2009	0 12:24 PM	S Filld
		answere	ed question	12
		skippe	ed question	7

Issue: measures

- "everything" used (including Extreme Dependency Score EDS, ROC-area)
- POD (view of the media: "something happened, has the weather service done it's job ?")
- FAR (view of an emergency manager: "the weather service activated us, was it justified ?"
- threat score frequently used, since definition of the no-forecast/no-obs category problematic
- no-forecast/no-obs category can be defined by using regular intervals of no/ no (e.g. 3 hours) and count how often they occur
- "F-measure" $F_{\beta} = (1 + \beta^2) * \frac{POD^*(1 FAR)}{\beta^2 * POD + 1 FAR}$

"After years of study we ended up in using the value 1.2 for β for extreme weather...."

Issue: "Interpretation" of results

Issue: "Interpretation" of results

Performance targets:

• extreme interannual variability for extreme events

• strong influence of change of observational network; "if you detect more, it's easier to forecast" (e.g. after NEXRAD introduction in the USA)

Case studies

remain very popular, rightly so ?

Significance

• only bad if you think in terms wanting to *infer* future performance, ok if you just think *descriptive*

 care needed when extrapolating from results for mildy severe events to very severe ones, since there can be step changes in forecaster behaviour taking some C/L ratio into account

Issue: "Interpretation" of results

Consequences

- changing forecasting process
 - e.g shortening of warnings at DWD dramatically reduced false alarm ratio based on hourly verification almost without reduction in POD
 - creating new products (probabilistic forecasts)

Issue: user-based assessments

9. Do you do user based assessmen	s? What questions do you ask?		
		Response Percent	Response Count
yes		50.0%	7
no		50.0%	7
	Hide replies Other (ple	ase specify)	3
 i am not sure Snow depth critical for traffic, hydrogeneous statements 	Fri, Jun 5, 2009 rological risk Thu, Jun 4, 2009	9:43 AM 9 9:57 PM	Sind
 Did you have sufficient lead time Did you take any precautions? Was the infomation useful? 	? Thu, Jun 4, 2009	9 12:35 PM	🔦 Find
	answer	ed question	14
	skipp	ed question	5

Issue: user-based assessments

• important role, especially during process of setting up county based warnings and subsequent fine tuning of products, given the current ability to predict severe events

• surveys, focus groups, user workshops, public opinion monitoring, feedback mechanisms, anecdotal information

- presentation of warnings to the users essential
- "vigilance evaluation committee" (Meteo France /Civil Authorities)
- typical questions:
 - Do you keep informed about severe weather warnings?
 - By which means?
 - Do you know the warning web page and the meaning of colours?
 - Do you prefer an earlier, less precise warning or a late, but more precise warning?

•

Example here, gust warnings

- Warning guidance: "Local model gust forecast" (=mesoscale model)
- warning:

human (forecaster)

10. Do you compare warning guidance	e systems with warnings?		
		Response Percent	Response Count
no		46.7%	7
model guidances		53.3%	8
statistical products		20.0%	3
expert systems		13.3%	2
	answer	red question	15
	skipp	ed question	4

I warn you of dangerous...

Heidke skill score

Bias

■ forecaster ■ Local model

relative value for C/L=0,1

■ forecaster ■ Local model

relative value for C/L=0,01

very different biases →comparison of apples and oranges

But is there a way of "normalising", so that at least the **potentials** can be compared ?

Re-calibration"model bias = forecaster bias"cdf(model) = cdf(forecaster)model in m/s----> "model gust interpretation
for warnings "

13	>	14	(near gale)
16	>	18	(gale)
22	>	25	(storm)
25	>	29	(violent storm)
30	>	33	(hurricane force

Verification of heavily biased model ? Quite similar to forecaster !

Relative Operating Characteristics (ROC)

Conclusions for comparative verification man vs machine

End user verification: verify at face value

Model (guidance) verification: measure potential

Users of warnings are very diverse and thus warning verification is also very diverse.

Each choice of a parameter of the verification method has to be user oriented – there is no "one size fits all".

Can we warn even better ?

Fig. 6. Maximum wind gusts (in $\text{km}\,\text{h}^{-1}$) at different synoptic stations reported during the period from 00:00 UTC 17 January to 18:00 UTC 19 January 2007. Dots (crosses) delineate lowland (mountain) stations. Lowland stations possess an altitude lower than 800 m a.s.l. White symbols denote stations where no wind gusts were observed or reported.