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Introduction 
•  Statistical inference is needed in many 

circumstances, not least in forecast verification. 
•  We explain the basic ideas of statistical 

inference (some old, some newer), some of 
which are often misunderstood.  

•  A simple example is used to illustrate the ideas – 
you will able to replicate the results (and more) 
in R. 

•  The emphasis here is on interval estimation. 
•  The presentation draws heavily on Jolliffe (2007) 

– some of the results are slightly different. 
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Example 
•  Niño 3-4 SST1958-2001. Data + 9 hindcasts produced 

by a ECMWF coupled ocean-atmosphere climate model 
with slightly different initial conditions for each of the 9 
members of this ensemble (data from Caio Coelho). 

•  9 time series, which we refer to as ‘forecasts’, are 
constructed from the ensemble members and compared 
with observed data. 
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Verification measures and uncertainty 
•  We could compare the ‘forecasts’ with the observations 

in a number of ways – for illustration consider  
–  Compare the actual values of SST using the correlation 

coefficient 
–  Convert to binary data (is the SST above or below the mean?): 

use hit rate (probability of detection - POD) as a verification 
measure. 

•  The values of these measures that we calculate have 
uncertainty associated with them – if we had a different 
set of forecasts and observations for Niño 3-4 SST, we 
would get different values. 

•  Assume that the data we have are a sample from some 
(hypothetical?) population and we wish to make 
inferences about the correlation and hit rate in that 
population.   
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Example - summary 
•  The next two slides show 

–  Scatterplots of the observations against two of the 
forecasts (labelled Forecast 1, Forecast 2) with the 
lowest and highest correlations of the nine ‘forecasts’:    
r = 0.767, 0.891.  

–  Data tabulated according to whether they are above or 
below average, for two forecasts labelled Forecast 1, 
Forecast 3 with lowest and highest hit rates (PODs) 
0.619, 0.905. 

–  The variation in values between these forecasts 
illustrates the need for quantifying uncertainty. 

•  We will look at various ways of making inferences 
based on these correlations and hit rates. 
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Two scatterplots: r = 0.767,0.891 
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Binary data for two forecasts 
(Hit rates 0.619, 0.905) 

Observed 

Above Below 

Forecast 1 Above 13 7 

Below 8 16 

Forecast 3 Above 19 5 

Below 2 18 
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Inference – the framework 

•  We have data that are considered to be a 
sample from some larger population. 

•  We wish to use the data to make 
inferences about some population 
quantities (parameters), for example 
population mean, variance, correlation, hit 
rate … 
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Types of inference 

•  Point estimation – e.g. simply give a single number to 
estimate the parameter, with no indication of the 
uncertainty associated with it. 

•  Interval estimation - a standard error could be attached 
to a point estimate, but it is better to go one step further 
and construct a confidence interval, especially if the 
distribution of the measure is not close to Gaussian. 

•  Hypothesis testing - in comparing estimates of a 
parameter for different samples, hypothesis testing may 
be a good way of addressing the question of whether 
any change could have arisen by chance.  
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Approaches to inference 

1.  Classical (frequentist) parametric inference. 
2.  Bayesian inference. 
3.  Non-parametric inference. 
4.  Decision theory 
5.  … 
Note that 

–  The likelihood function is central to both 1 and 2. 
–  Computationally expensive techniques are of 

increasing importance in both 2 and 3. 
 For more, at a fairly advanced level, see 
Garthwaite et al. (2002). 
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Reminder of the contingency tables for two 
forecasts 

(Hit rates 0.619, 0.905) 
Observed 

Above Below 

Forecast 1 Above 13 7 

Below 8 16 

Forecast 3 Above 19 5 

Below 2 18 



Helsinki June 2009 12 

Interval estimation 

What is 
•  A confidence interval? 
•  A prediction or probability interval? 
•  A Bayes or credible interval? 
•  An interval obtained by bootstrapping? 
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What is a confidence interval? 
•  Given a sample value of a measure (statistic), find an 

interval with a specified level of confidence (e.g 95%, 
99%) of including the corresponding population value of 
the measure (parameter).  

http://www.amstat.org/publications/jse/v6n3/applets/ConfidenceInterval.html 

Note: 
•  The interval is random; the 
population value is fixed – 
see diagram produced by 
the referenced applet 
•  The confidence level  is 
the long-run probability that 
intervals include the 
parameter, NOT the 
probability that the 
parameter is in the interval 
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Confidence intervals for hit rate 

•  Like several other verification measures, hit rate is the 
proportion of times that something occurs – in this case 
the proportion of occurrences of the event of interest that 
were forecast. Denote such a proportion by p. 

•  A confidence interval can be found for the underlying 
probability of a correct forecast, given that the event 
occurred. Call this probability π. 

•  The situation is the standard one of finding a confidence 
interval for the ‘probability of success’ in a binomial 
distribution, and there are various ways of tackling this. 
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 Binomial confidence intervals 
•  A crude approximation is based on the fact that the 

distribution of p can be approximated by a Gaussian 
distribution with mean π and variance p(1-p)/n where 
n is the ‘number of trials’. The interval has endpoints 
p ± zα/2√p(1-p)/n, where zα/2 = 1.96 for a 95% interval. 

•  A slightly better approximation is based on the fact 
that the distribution of p is better approximated by a 
Gaussian distribution with mean π and variance    π
(1-π)/n. Its endpoints are given by the roots of a 
quadratic equation. They are 
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Binomial confidence intervals II 

 For small n we can find an interval based on the 
binomial distribution itself rather than a Gaussian 
approximation. Such intervals are sometimes 
called ‘exact’, though their coverage probability 
is generally not exactly that specified, because 
of the discreteness of the distribution. Details are 
not given, but charts are available for finding 
such intervals and there is a function in R for 
doing so. 
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What is a Bayes interval? (also called a 
credible interval) 

•  In the Bayesian approach to inference, a prior 
distribution for the parameter of interest (here π) 
is combined with the likelihood function for the 
data to give a posterior distribution for π (Epstein, 
1985). 

•  Bayes intervals are a different sort of animal 
from confidence intervals – they assume that  π 
is random, not fixed, and use percentiles from its 
posterior probability distribution. 
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Bayes intervals for a binomial 
parameter 

•  The obvious type of prior distribution for π is a Beta 
distribution. Such distributions are: 
–  Defined on the range [0,1], like π; 
–  Reasonably flexible in their shape; 
–  Conjugate – a Beta prior implies a Beta posterior. 

•  The pdf for a Beta distribution with parameters α and β is  

The likelihood function (simply the binomial probability function for x 
successes in n trials) is 

Multiplying these leads a Beta posterior with parameters (α+x), (β+n-x). 
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Two Beta prior (left) and corresponding 
posterior (right) distributions for Forecast 1 

For a 90% Bayes interval, find values in the posterior distribution 
that cut off 5% probability in each tail. These then form the end-
points of the interval. Similarly for other confidence levels. 
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What is a bootstrap interval?  
•  The data set for Forecast 1 consists of 13 

successes (1’s) and 8 failures (0’s).  
•  Take B random samples of size 21 with 

replacement from these 21 values and calculate 
p for each sample.  

•  Rank the B values of p. For a confidence level 
(1-2α) find the Bαth smallest and Bαth largest of 
the r values. Call these l and u. 

•  There are various bootstrap confidence intervals 
of varying complexity. The easiest to understand 
and implement is the percentile method, which 
uses the interval (l, u).  

•  Results are given for B = 1000. 
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# First let's input the data used in the lecture. 

Fcast1Binary <- c(13,7,8,16) 
Fcast2Binary <- c(19,5,2,18) 
Fcast123Cont <- read.table("Data/Fcast123Cont.txt",header=TRUE) 

# Then to remind ourselves of these data, calculate correlation coefficients and   
# plot scatterplots for observed values vs Forecasts 1 & 2. The x11() between  
# the plots opens a new window for the second plot. Otherwise the second plot   
# overwrites the first. 

cor(Fcast123Cont[,1],Fcast123Cont[,4]) 
cor(Fcast123Cont[,2],Fcast123Cont[,4]) 

plot(Fcast123Cont[,1],Fcast123Cont[,4],xlab="Forecast1",ylab="Observations") 
x11() plot(Fcast123Cont[,2],Fcast123Cont[,
4],xlab="Forecast2",ylab="Observations") 

There follow some R commands, from the separate R script you 
have, which reproduce the results in the lecture. There are many 
useful functions in R for doing verification, notably in the verification 
package. However, for the simple examples used in this lecture, R is 
used mainly as a calculator. 
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# There is no specific function for getting the crude binomial confidence 
# interval but you can use R as a calculator. Here we do it for Forecast 1. 
# You could try it for Forecast 3. 

p1 = 13/21 
sdp1 = sqrt((13*8)/(21*21*21)) 
p1crudelow = p1 - 1.96*sdp1 
p1crudehigh = p1 + 1.96*sdp1 
CIp1Crude <- c(p1crudelow,p1crudehigh) 
CIp1Crude 

# R tends to give more digits in output than are really needed. Here the number  
# of digits is reduced until a subsequent command changes it again. 

options(digits=3) 
CIp1Crude 
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# Similarly for the less crude approximation. 

a = 1.96*sqrt(1.96*1.96 + 4*13*(1-(13/21))) 
b = 2*13 + 1.96*1.96 
c = 2*(21 + 1.96*1.96) 
CIp1Approx <- c((b-a)/c,(b+a)/c) 
CIp1Approx 

# There is an R function for getting the exact binomial interval.  
# However, it doesn't allow you to simply find a confidence interval  
# but always does a test of hypothesis as well. If you don't tell it  
# a null value for p, it assumes it is 0.5. This time we do it for  
# Forecast 3 - try it for Forecast 1. 

binom.test(19,21,conf.level=0.95) 
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# To get Bayes intervals we need to find values of appropriate Beta  
# random variables corresponding to fixed probabilities. It is done  
# here for the two prior distributions used in the lecture, with  
# Forecast 1. You could try it with Forecast 3, or even try different  
# priors. 

Bayesp1UnLow <- qbeta(0.025,14,9) 
Bayesp1UnHigh <- qbeta(0.975,14,9) 
CIBayesp1Un = c(Bayesp1UnLow,Bayesp1UnHigh) 
CIBayesp1Un 

Bayesp1InfLow <- qbeta(0.025,23,13) 
Bayesp1InfHigh <- qbeta(0.975,23,13) 
CIBayesp1Inf = c(Bayesp1InfLow,Bayesp1InfHigh) 
CIBayesp1Inf 
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# Finally for this example, find some bootstrap intervals. 
# First load the library boot, and put the data for Forecast 1  
# into a form that can be used for bootstrapping. 

library(boot) 
Binom1321Dat <- c(rep(1,13),rep(0,8)) 
Binom1921Dat <- c(rep(1,19),0,0) 

# Next define a function which is needed in the 'boot' command. 

phat <- function(d,i) {sum(d[i])/21} 

# Generate 1000 bootstrap samples for the data with hit rate 13/21   
# and plot a histogram of the estimate of p for these samples.  

boot(Binom1321Dat,phat,1000) 
phat1000 <- boot(Binom1321Dat,phat,1000) 
hist(phat1000$t) 

# Calculate a 'percentile' bootstrap confidence interval - other more  
# complicated varieties of bootstrap interval are available. 

boot.ci(phat1000, conf=0.95, type = "perc") 
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More on bootstrap 

•  There are other bootstrap intervals 
– Basic bootstrap  
– Parametric bootstrap 
– Bootstrap-t intervals 
– BCα 
– ABC 

•  For more  information see Efron & 
Tibshirani (1993) and 
http://www.rap.ucar.edu/staff/ericg/Gilleland2008.pdf   
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Binomial example - 95% intervals 

Forecast 1 Forecast 3 
Crude approx. (0.41,0.83) (0.78,1.03) 
Better Approx. (0.41,0.79) (0.71,0.97) 

‘Exact’ (0.38,0.82) (0.70,0.99) 
Bayes – uniform (0.41,0.79) (0.71,0.97) 
Bayes – informative (0.48,0.79) (0.66,0.92) 

Percentile bootstrap (0.43,0.81) (0.76,1.00) 

•   There is very little difference between the intervals for Forecast 1 (p = 13/21). This 
demonstrates that n=21 is large enough, and p far enough from 0 or 1, for the 
approximations to work reasonably well. There are larger discrepancies for Forecast 
3, where p =19/21 is closer to 1. 
•   For Forecast 3 the upper limit exceeds 1 for the crude approximation, which is 
unsatisfactory. 

•  The informative prior has 
mean 2/3. The 
corresponding Bayes 
interval is narrower than that 
for the uniform prior for 
Forecast 1, and shifted 
downwards for Forecast 3. 

•  The ‘exact’ interval is wider 
than any of the others, but 
this may be because its 
confidence coefficient is 
greater than 95%. 
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Confidence intervals for differences 

•  Suppose we have two forecasts and we wish to 
compare their hit rates by finding a confidence 
interval for the difference between the two 
underlying parameters π1-π2. 

•  In the present example it is pretty clear that, 
because of the small sample sizes, any interval 
will be very wide.  

•  However, as an illustration we find an 
approximate 95% confidence interval for π1-π2 
for our current data, with p1 = 13/21, p2 = 19/21. 



Helsinki June 2009 29 

Confidence intervals for differences - example 

•  Substituting gives -0.29 ± 0.24, so interval is (-0.53,-0.05). This 
does not include zero, implying that π1,π2 are different. 

•  This interval is based on the crude approximation. However the 
percentile bootstrap gives a very similar interval (-0.52,-0.05). 

•  Note that all the pairs of individual 95% intervals for π1, π2 overlap, 
suggesting that π1, π2 may not be different. 

•  In comparing parameters it is usually more appropriate to find a 
confidence interval for the difference than to compare individual 
intervals. Looking at overlap of intervals is often misleading. 

•  Note that the interval above assumes independence of p1, p2. If 
they were positively correlated, the interval would be narrower. 
Bootstrapping can incorporate pairing between forecasts and gives 
a percentile interval (-0.48,-0.10). 

An approximate 95% interval has endpoints 
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Confidence intervals for Pearson’s 
correlation coefficient 

•  We have r, a sample value. We want a 
confidence interval for ρ, the corresponding 
population quantity. 

•  There are various approximations 
–  Interval with endpoints r ± zα/2(1-r2) /√n. 
–  Based on Fisher’s z-transformation, ½loge[(1+r)/(1-r)] 

is approximately normally distributed with mean ½loge
[(1+ρ)/(1-ρ)] and variance 1/(n-3).  

•  Bayesian and bootstrap approaches could also 
be used. 
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Confidence intervals for correlation 
coefficients - example 

•  There is very little difference between these intervals.  
•  In general, the second should give a better approximation 

than the first. 
•  Bootstrap will be preferred if there is doubt about 

distributional assumptions. 

Forecast 1 Forecast 2 
Normal approximation (0.65,0.89) (0.83,0.95) 
Fisher’s transformation (0.61,0.87) (0.81,0.94) 
Percentile bootstrap (0.61,0.87) (0.80,0.95) 
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What is a prediction interval? 

•  A prediction interval (or probability interval) is an 
interval with a given probability of containing the 
value of a random variable, rather than a parameter. 

•  The random variable is random and the interval’s 
endpoints are fixed points in its distribution, whereas 
the interval is random for a confidence interval. 

•  Prediction intervals, as well as confidence intervals, 
can be useful in quantifying uncertainty when 
estimating parameters.  
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Prediction intervals for correlation 
coefficients 

•  We need the distribution of r, usually calculated under 
some null hypothesis, the obvious one being that  ρ =0. 
Using the crudest approximation, r has a Gaussian 
distribution with mean zero, variance 1/n and a 95% 
prediction interval for r, given ρ=0, has endpoints 0 ± 
1.96√1/n. 

•  Our example has n=44, so a 95% prediction interval is 
(-0.295, 0.295). 

•  Prediction interval: given ρ = 0 we are 95% confident 
that r lies in the interval (-0.295, 0.295). 

•  Confidence interval: given r = 0.767, we are 95% 
confident that the interval (0.61, 0.87) contains ρ. 
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Hypothesis testing 

 The interest in uncertainty associated with a 
verification measure is often of the form 
–  Is the observed value compatible with what might 

have been observed if the forecast system had no 
skill? 

–  Given two values of a measure for two different 
forecasting systems (or the same system at different 
times), could the difference in values have arisen by 
chance if there was no difference in underlying skill 
for the two systems (the two times)? 
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Hypothesis testing II 

•  Such questions can clearly be answered 
with a formal test of the null hypothesis of 
‘no skill’ in the first case, or ‘equal skill’ in 
the second case.  

•  A test of hypothesis is often equivalent to 
a confidence interval and/or prediction 
interval.  
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Correlation coefficient - test of ρ=0 

•  Continue our example with r = 0.767, n=44 and null 
hypothesis H0: ρ=0. 

•  Use the crude approximation that, under H0,, r has a 
Gaussian distribution with mean zero, variance 1/n.  

•  Then reject H0 at the 5%* significance level if and only if r 
is larger than 1.96√1/n or less than -1.96√1/n; in other 
words, if and only if r is outside the 95% prediction 
interval (-0.295, 0.295) for r found earlier.  

•  Clearly H0 is rejected at the 5% level or, indeed, much 
more stringent levels. 

 *  atmospheric scientists, but hardly anyone else, 
sometimes refer to this as 95% 
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Correlation coefficient - test of ρ=0 
via confidence intervals 

•  We could also use any of our earlier 
confidence intervals to test H0. We gave 
95% intervals, and would reject H0 at the 
5% level if and only if the interval fails to 
include zero, which it does in all cases. 

•  If the intervals were 99%, the test would 
be at the 1% level, and so on. Similarly for 
prediction intervals. 
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Decision theory and p-values  
•  Hypothesis tests can be treated as a clear-cut decision 

process – decide on a significance level (5%, 1%) and 
derive a critical region (a subset of the possible data) for 
which some null hypothesis (H0) will be rejected. 

•  For a full decision theory approach, we also need a loss 
function and prior probabilities. 

•  Alternatively a p-value can be quoted. This is the 
probability that the data, or something less compatible 
with H0, could have arisen by chance if H0 was true.  

•  IT IS NOT the probability that H0 is true.   
•  The latter can be found via a Bayesian approach. 
•  For more on p-values, see Jolliffe (2004).  
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Permutation and randomisation 
tests of ρ=0 

•  If we are not prepared to make assumptions about the 
distribution of r, we can use a permutation approach:  
–  Denote the forecasts and observed data by (fi, oi), i =1, …n. 
–  Fix the fis, and consider all possible permutations of the ois.  
–  Calculate the correlation between the fis and permuted ois in 

each case. 
–  Under H0, all permutations are equally likely, and the p-value for 

a permutation test is the proportion of all calculated correlations 
greater than or equal to (in absolute value for a two-sided test) 
the observed value. 

•  The number of permutations may be too large to 
evaluate them all. Using a random subset of them 
instead gives a randomisation test, though the terms 
permutation test and randomisation test are often used 
synonomously. 
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What have we learned? 
•  When calculating a verification measure, there is 

(almost?) always uncertainty associated with the 
value of that measure. 

•  Statistical inference can help to quantify that 
uncertainty. 

•  Sometimes we may wish to test a specific 
hypothesis such as ‘are the forecasts better than 
chance?’ or ‘does a new forecasting system give 
better forecasts than an old one?’. 

•  More often, a confidence interval, or some other 
type of interval, is a more useful way of 
quantifying uncertainty. 
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What have we learned II 
•  We have seen several different types of 

‘uncertainty interval’: confidence intervals, Bayes 
intervals, bootstrap intervals, prediction intervals. 

•  For a given dataset, there may be different ways 
of calculating these intervals.  

•  The choice between intervals depends on the 
assumptions that can be made about the 
distribution of the data.  Bootstrap (and other 
non-parametric) intervals typically make fewer 
assumptions than other intervals. 

•  We have also seen links between interval 
estimation and hypothesis testing. 
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Concluding (cautionary) remarks 

•  We have covered some of the main ideas, but only a tiny 
part, of statistical inference. For example, there was 
nothing on traditional non-parametric inference. 

•  Inference has many subtleties. The American Statistician 
often has examples of this in relatively simple contexts. 
For example, see Tuyl et al. (2008) for a discussion of 
what is an ‘uninformative’ prior distribution for a binomial 
parameter – a situation we considered.  

•  For some standard verification measures, software and/
or formulae exist for quantifying uncertainty, but in many 
cases this is not yet the case. This is no excuse for 
ignoring uncertainty. 
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# Now on to confidence intervals for a correlation coefficient. 
# To get the crude and better approximations we again need to do some 
# arithmetic. First, the crude approximation. 

r1 <- cor(Fcast123Cont[,1],Fcast123Cont[,4]) 
r1crudelow = r1 - 1.96*(1-r1*r1)/sqrt(44) 
r1crudehigh = r1 + 1.96*(1-r1*r1)/sqrt(44) 
r1crudeCI <- c(r1crudelow,r1crudehigh) 
r1crudeCI 

# Now the better approximation using Fisher's transformation. 

d <- 0.5*log((1+r1)/(1-r1)) 
dlow <- d - 1.96/sqrt(41) 
dhigh <- d + 1.96/sqrt(41) 
r1approxhigh <- tanh(dhigh) 
r1approxlow <- tanh(dlow) 
r1approxCI <- c(r1approxlow,r1approxhigh) 
r1approxCI 
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# R has a function that will provide a confidence interval for a correlation 
# coefficient but like that for a binomial parameter, the interval can only be  
# found in conjunction with a test of hypothesis. The result tallies with that  
# found above using Fisher's transformation. 

cor.test(Fcast123Cont[,1],Fcast123Cont[,4],method = "pearson", conf.level = 0.95) 

# Finally for the correlation coefficient we do a similar bootstrapping as  
# for the hit rate.    

corr <- function(d,i) {cor(d[i,1],d[i,4])} 
boot(Fcast123Cont,corr,1000) 
corr1000 <- boot(Fcast123Cont,corr,1000) 
hist(corr1000$t) 
boot.ci(corr1000, conf=0.95,type = "perc") 

# You can repeat all the confidence intervals above for Forecast 2 instead 
# of Forecast 1 by replacing Fcast123Cont[,1] by Fcast123Cont[,2] in  
# appropriate places above.  
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# Hypothesis tests. We have already seen that some confidence intervals can only 
# be found in R as a byproduct of a test of hypothesis. In general confidence  
# intervals are more useful than hypothesis tests but the latter can sometimes 
# be relevant. For example, suppose a long established forecasting system has a 
# hit rate of 0.75 and a new system has 19 hits out of 21. The following command 
# tests the null hypothesis that p=0.75 for the new system against a one-sided  
# alternative that p is greater than 0.75. A p-value is given, as is a confidence 
# interval which can also be used to decide whether p=0.75 is plausible. 

binom.test(19,21,p=0.75,alternative="greater") 

# Often tests of whether or not two (or more) hit rates, correlations, or other  
# measures are significantly different (i.e. whether or not the underlying 
# population difference is zero) are of interest. R has little that addresses this  
# directly. Here we use bootstrapping to compare two hit rates 13/21 and 19/21.  
# First create a data matrix from which we can sample. 

HitRatesData <- c(Binom1321Dat,Binom1921Dat) 
HitRates.mat <- matrix(HitRatesData,21,2) 
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# Now produce 1000 bootstrap samples from binomial distributions with these hit rates as        
# probabilities of success, and look at the difference between the number of successes in 
#each case.  

hitdiff1 <- function (d,i) {sum(d[i,1])} 
boot1.out <- boot(HitRates.mat,hitdiff1,1000) 
hitdiff2 <- function (d,i) {sum(d[i,2])} 
boot2.out <- boot(HitRates.mat,hitdiff2,1000) 
Diff <- boot2.out$t - boot1.out$t 
table(Diff) 

# The 25th and 975th ordered values in these tabulated differences, divided by 21, will give a 
# 95% percentile bootstrap confidence for the difference between the underlying hit rates. 
# The reason for defining two functions above was that an attempt with only one function 
#used the same indices for the two samples, hence leading to correlated samples. The 
#present scheme makes the samples independent, but means that the boot.ci function can't 
# be used on the derived quantity Diff. In fact the data are paired - for each observation there 
# is a Forecast 1 and a Forecast 3. It is actually slightly easier to find bootstrap intervals for  
# paired data. The following does this assuming that the ordering of Forecast1 in 
#HitRates.mat is the same as the ordering of Forecast 3. 

hitdiff <- function (d,i) {(sum(d[i,1])-sum(d[i,2]))/21} 
diff1000 <- boot(HitRates.mat,hitdiff,1000) 
boot.ci(diff1000, conf=0.95,type = "perc") 


